If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3=-16t^2+160t+2
We move all terms to the left:
3-(-16t^2+160t+2)=0
We get rid of parentheses
16t^2-160t-2+3=0
We add all the numbers together, and all the variables
16t^2-160t+1=0
a = 16; b = -160; c = +1;
Δ = b2-4ac
Δ = -1602-4·16·1
Δ = 25536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{25536}=\sqrt{64*399}=\sqrt{64}*\sqrt{399}=8\sqrt{399}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-8\sqrt{399}}{2*16}=\frac{160-8\sqrt{399}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+8\sqrt{399}}{2*16}=\frac{160+8\sqrt{399}}{32} $
| -3+9r=8r+4 | | 3x-9/1.16=x+8 | | -x/7=-34 | | -8m=10-9m | | 1+4x=73 | | -8+d=-2d+7 | | -4y+36=3(y-2) | | 36=-w/3 | | 2q=-q^2 | | m-8=7-2m | | 17n+9=18n | | -2v=-7v^2 | | 4w=10+2w | | 2+10v=-18 | | -8x=-x^2-6 | | (2)6x+7=19x-28 | | -4+10=-9h | | 8-s=3s | | 3/2x+5=x-2 | | 8−s=3s | | x+1/3x-10=50 | | 6s=-s^2-9 | | 4j=-3+5j | | -20.5=y/6-1.3 | | -2x-6=50 | | 40x^2+80x-70=0 | | 3b-5=2b÷6+2 | | 8x-5=5x-26 | | 8z^2-2=-8z | | -8p=-3p+10 | | 2x+71=50 | | c-11/3=2 |